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SUMMARY

3

This experimental work was conducted to determine the performance
of porus tungsten ionizers. The purpose was to determine the type of
plug which had the highest efficiency of ionization.

In addition to the outgassing treatment, all the sources were heated
in a pressure of 1 x 10—5 torr of oxygen in order to reduce their carbon
contents.l’2’3 Since the oxygen adsorbed layer is extremely stable up to
temperatures as high as 1800° K,l+ the source was sputtered by cesium ions
before a clean surface data was taken. To test the reproducibility of our
testing system, HRL 3.9 micron (rhodium brazed) source was re-examined
for the second time (other sources were tested in between). The second
set of data coincided exactly with the previous results after one sputter
cleaning to remove the adsorbed oxygen layer.

A comparison of the performance of a rhodium brazed and an electron-
beam welded source of the same porous material (HRL 3.9 micron) was con-
ducted. The first electron-beam welded source showed a much higher neutral
fraction than the rhodium brazed one. The high neutral fraction was be-
lieved due to contamination during the welding process. Care was taken
during the welding for. a second electron-beam welded source. After exten-
sive cleaning the second electron-beam welded source showed a lower
neutral than the rhodium brazed source and less degradation in performance
as the current density increases. This along with the fact that both
electron-beam welded sources had a transmissivity twice as high as that

of the rhodium brazed, one may conclude that there was further sintering

during the rhodium brazing (~ 2240° K).
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EOS 1B-N20 low equivalent density (51.55%) special etched structure
(see Figures 25 and 26) has the lowest neutral fraction for a given cur-
rent density.

When one compares the performance of the LeRC 3.5 micron to LeRC 4.2
micron and ORNL 3.5 micron to ORNL 4.2 micron, one finds that the neutral
fraction of 3.5 micron increases slower than that of 4.2 micron with
increasing cesium ion density. The performance at 20 ma/cm2 definitely
shows the superiority of the 3.5 micron over that of the 4.2 micron. The
explanation of this is that the current density per pore for a given ion
current is lower for the 3.5 micron than the 4.2 micron.

The influence of molecular current density in each pore can be traced
to the relative collision probability between cesium molecules and between
cesium and the tungsten walls of the pore; if cesium with cesium collision
dominates, the resulting cesium beam will be un-ionized.

In a recent paper5 it was indicated that tungsten-tantalum alloy has
a low work function (3.8 ev) for W-3 per cent Ta to W-20 per cent Ta.
However, our results do not agree. The work function for W-10 per cent

Ta was measured to be 4.7 ev by the surface ionization method.

xii




TABLE I

HISTORY OF TEST SPECIMENS
PRIOR TO TESTING BY U OF I

TEST MATERIAL SOURCE

NO. & CONTRACT COMPOSITION & QUANTITY FABRICATION HISTORY
1 £os® 90W + 10T2 Electron peam welded
NAS3-6269 by NASA
Slab 10
2 HRL® 3.9 micron W, 100% Brazed by U of I
NAS3-7105
Slab 337
3 " " First electron beam
weld by NASA
b " " Second electron beam
weld by NASA
5 NASA 4.2 micron W, 100% Electron beam welded
by NASA
6 EOS 1% B (as BN) Electron beam welded
NAS3-7103 + 99% W by EOS
Mod 6
7 NASA 3.5 micron W, 100% Electron beam welded
by NASA
8 NASA 4.2 micron W, 100% Electron beam welded
by EOS
9 NASA 3.5 micron W, 100% Electron beam welded
by EOS
10 EOS 1% B (as BN) Electron beam welded
NAS3-7103 + 99% W by EOS
Mod 6 Electron beam welded
by EOS

a

b

C

Electro Optical Systems, Pasadena, California
Lewis Research Center of NASA, Cleveland, Ohio

Hughes Research Laboratory, Malibu, California
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INTRODUCTION

+ 1

This is a final report which covers the periocd from March 1966 to

1]

February 1967. The work was performed at the Department of Electrical
Engineering, University of Illinois, under the contract NAS-3-8904% from
Lewis Research Center of the National Aeronautics and Space Administration.
The goal of this program is to conduct an experimental study toward gain-
ing a better understanding of the behavior of cesium surface ionization on
porous tungsten. Nine porous pellets were supplied by the Lewis Labora-
tories. The object of the investigation was to determine the transmission
coefficient, the neutral efflux as a function of current density up to 20
ma/cm2 and the critical temperature as a function of current density at
intervals of 1 ma/cm2, 5 ma/cmz, 10 ma/cm2 and 20 ma/cm2

The neutral efflux and the critical temperature may vary widely de-
pending on the porous structure, the pore size, the transmission coeffi-
cient, the "alloying" material and finally, the unknown contaminants in-
troduced in the pellet during fabrication. The unknown contaminants are
probably the most influential factor in determining the neutral efflux and
the critical temperature.

Among the nine pellets tested in this reporting period were porous
structures of compressed spherical powders (Hughes 3.9 micron) and spe-
cially prepared structures (EOS 1B-X120). Grain sizes of 3 microns to 4
microns led to transmission coefficients which varied from lO_u to lO_5
(the transmission coefficients were measured on samples of 20 mil thick-
ness). In addition, some tungsten pellets were "alloyed" with a small

percentage of tantalum and boron metals.



EXPERIMENTAL METHOD

The porous tungsten ionizers were compared on the basis of transmis-
sion coefficient, neutral fraction and critical temperature as a function

of current density.

Transmission Coefficient

The main flow mechanism of cesium through the porous pellet is mole-
cular flow rather than viscous flow, since the mean free path is much
longer than the dimension of the pore. Therefore, the measurement of
transmissivity should be conducted under a pressure less than a few mm Hg.

The transmissivity is defined as the ratio of the number of molecules
coming out of the front surface to the number of molecules hitting the
back surface of the emitter. The transmissivity of a hole to vacuum is
unity. Another way of defining it is the ratio of pumping speed with and
without the porous plug in place. The pumping speed of a hole to vacuum

is

§ = — (1)

. . . . 2
where T is the diffusion rate in number of molecules/cm sec
A is the area of the hole in cm2
n is the density in number of molecules/cc

From the kinetic theory of gases we know that

r = — (2)
and

v = 8kT (3)
Tm




where V is the mean velocity of the molecules,
k is the Boltzmann constant,
T is the temperature and
m is the mass of the molecule.
Substituting Equation (2) and Equation (3) into Equation (1) will give the

pumping speed of a hole

/KT
smA /5— ®Ax 11,600 cc/sec (4)

for air at room temperature. The pressure variation of a fixed volume can

be expressed as

P 8 P exp [- %;J (5)

where P, is the pressure at time, t, equal to zero,
S is the pumping speed and
V is the volume of the container.

Equation (5) can be rewritten as

in £ (6)
Po

When the porous plug is in place, one can measure the time At required to

pump the pressure from Py to p,. The transmissivity, T, can be calculated

from Equation (4) and Equation (6)

\Y p2 V[2mm p
B et - al3T 0ot o

At At



Neutral Fraction as a Function of Current Density

An omega-field accelerating system was chosen over the grid structure
for this experiment. The "open'" structure eliminates the scattering of
cesium molecules which would give ambiguous neutral effiux readings. Other
advantages are no cesium accumulation on the accelerating structure to
produce a low work function surface which causes high drain currents and
no back sputtering of the accelerating structure material to contaminate
the ion emission surface.

The neutral efflux was measured by a hot filament neutral detector
with a shutter mechanism to separate the true neutral cesium reading from
the background current. Measurements were made as a function of cesium
ion current density from 1 ma/cm2 to 25 ma/chh The ion beam was collected
by a baffled current collector which was biased to recollect its secondary
electrons. The baffled collector was alsc liquid nitrogen cooled to pre-
vent any backstreaming cf cesium which could result in charge exchange and
false neutral readings from the detector.

The drain current from the accelerating electrode and the source
current from the ionizer were monitored to cross check the baffled col-

lector reading.

Critical Temperature as a Function of Current Density

The critical temperature was taken at intervals of 1 ma/cmz, 5 ma/cm2,
10 ma/cm2 and 20 ma/cmz. Prior to each reading, the emission surface was
sputtered by cesium ions to remove any contaminants which might have come
from the vacuum system or the interior of the porous plug. A clean sur-
face thus prepared is believed to give a true critical temperature.

The surface sputtering was accomplished by lowering a hot tungsten
ribbon close to the emission surface. When the emitter has a potential

n




negative with respect to the ribbon, the neutral cesium coming from the
emitter will be surface ionized on the ribbon and accelerated back to
sputter the emitter surface.

The critical temperature was measured by an optical pyrometer and a
thermocouple to provide a cross check. Tungsten - 5 per cent rhenium

versus tungsten - 26 per cent rhenium was used as the thermocouple.



EXPERIMENTAL APPARATUS

The experimental arrangement is similar to that of the previous
work.e’7 The experiment was conducted in a demountable glass T with
stainless steel end-plates and teflon O-rings as shown in Figure 1. The
vacuum station consists of a 150 liter/sec ion pump and two sorption
pumps to eliminate any possible back diffusion of oil vapor which would
carbonize the hot tungsten surface. The total pressure in the vacuum

-8 .
system was of the order of 10 ~ torr and contained mostly untrapped cesium.

Source Assembly

The pellet was machined to 0.156 inches in diameter and 0.020 inches
thick. One of the pellets was rhodium brazed to the molybdenum plenum
while the other eight were electron beam welded. Figure 2 shows a cross-
section of the source assembly with a tantalum heater in place. The
0.060 inch 0.D. molybdenum feed tube slid for about 1.5 inches into a
thick wall molybdenum tube which was connected to the cesium reservoir.
The precision fitting of these two tubes and the cascade differential
pumping along the overlapping portion assured that there was no leakage
of cesium at the junction. The cesium reservoir was formed by 0.5 inch
0.D. OFHC copper tubing with one end pinch-sealed. A glass ampoule of
cesium was placed in the reservoir. The ampoule was crushed from the

outside of the vacuum system after the chamber was evacuated.

AcceleratingﬁElectrode

The accelerating electrode was made of 5 mil tungsten sheet so that
it was possible to pass current through the sheet to keep it hot and thus
to prevent the accumulation of cesium that Figure 3 shows. The edge of

the electrode has been spot welded with a polished 50 mil ring to avoid




Figure 1.

Experimental apparatus
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Figure 3.

Accelerating electrode structure
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a localized high electric field. This electrode reduced the drain current

to a negligible amount.

Neutral Detector

The neutral detector was stationary and liquid nitrogen cooled as
shown in Figure 4. The calibration used was based on 100 per cent neutral
emission either during a no voltage condition or when the pellet was be-
yond critical temperature. The neutral reading was not sensitive to the
detector ribbon temperature as long as the ribbon was above the critical
temperature. This detector was capable of reading 1 x lO_ll amp with the
existing background noise. This is equivalent to detecting 5 x 10_6 amp
of cesium per cm2. In other words, the lower limit of detection of neutral
fraction is 0.5 per cent at 1 ma/cm2 and 0.1 per cent at 5 ma/cm2 and 0.05
per cent at 10 ma/cm2. Thus, on a fractional basis the detector is capable
of measuring a lower percentage of neutrals at higher current densities
than at lower ones. This explains some of the flat portions of the criti-

2
cal temperature curve at 1 ma/cm .

Transmissivity Measurement

The device consists of an RCA-1946 thermocouple gauge sealed into a
fitting to support the molybdenum feed tube on which the porous pellet and
plenum are mounted. The entire assembly fits a 3/4 inch diameter Veeco
quick-connect fitting on the forepump side of a 6 inch pumping system.

The quick-connect fitting is isolated by a bellows valve from the pump
which produces a pressure of lO_3 torr at the fitting when the valve is
open. It was necessary to place the sample in a vacuum for several hours
to remove all the adsorbed water vapor before each transmissivity test in

order that the data would be reproducible. The output of the RCA-1946

10




Figure 4. Neutral detector with shutter mechanism
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was recorded on a recorder. A typical recorded curve is shown in

Figure 5.

The complete experimental assembly is shown in Figures 6 and 7.

12




Gauge =
Thermocouple Porous W Plug
Gauge

4—————— Time 8inches per hour

Thermocouple Voltage Increase from

5.2MV to 8.2MV is Equivalent to

8.2MV B, =0.0367 Torr a Pres -2 Drop of On e Value

\' 2TTm
Transmissivity = A KT Ane
At
T —l, 68.5x10~ °
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T ] o
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Figure 5. Transmissivity measurement of the porous pellet
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Figure 6. Photograph of complete experimental assembly
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EXPERIMENTAL RESULTS

Test No.l - NASA electron-beam weld EOS W-10 per cent-Ta (NASA 3-6269,
slab No. 10 polished surface)

Figure 8 illustrates the gradual improvement of the neutral fraction
as the surface of the newly assembled source is cleaned. Prior to taking
curve (1), the source was heated at 1600° K for over four hours. Then the
source was operated up and down in current density as shown in curves (1),
(2), (3) and (4) in Figure 1. The source was then sputtered and curve (5)
was taken. The critical temperatures for various current densities were
also taken at this time. They were about 50° K higher than the clean data
presented in Figure 9. Further sputtering and cleaning was continued
until the surface was clean and the data was reproducible. The data for
critical temperature at various current densities is shown in Figure 9.
Figure 10 shows the current density vs. neutral fraction for the clean EOS
W-10 per cent-Ta source. The transmissivity of this pellet has been

measured to be 1.53 x 10_5.

The neutral detector was capable of reading a lower limit of 1 x lO_ll
amp (equivalent to 0.5 per cent at 1 ma/cmz) with the existing background
noise as mentioned previously in the text. This explains the flat portion
of the critical temperature curve at 1 ma/cm2 in Figure 9 and the gradual

increase in neutral fraction as the current density decreased below 2

ma/cm2 in Figure 10.

Test No. 2 - HRL 3.9 micron (machined and rhodium brazed by University of

Illinois)
This sample was intended as a contrcl sample for the comparison of a

rhodium brazed to an electron-beam weld sample of the same porous material.
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Figure 11 is a x500 micrograph of the HRL 3.9 micron porous tungsten-
copper button as received from the machinist. Figure 12 is a x500 micro-
graph after the copper has been de-infiltrated. After brazing in a molyb-
denum plenum the button was electrolytically etched and the result is
shown in Figure 13,

Figure 14 shows the neutral fraction as a function of current density
before and after the source was cleaned. Also shown in this figure is a
curve of a slightly oxygenated surface. This curve was taken after the
source was cleaned and then exposed to atmosphere for a short period of
time. The effect of a slightly oxygenated surface is supported by its
lower neutral fraction and higher critical temperature.6 With one sputter
cleaning the adsorbed oxygen can be removed, and the neutral fraction
curve coincides with its clean curve,

Figure 15 shows the neutral fraction as a function of emitter temper-
ature after the surface is cleaned. The transmissivity of this source is

6.85 x 10'5.

Test No. 3 - HRL 3.9 micron (Electron-beam weld by NASA No. 1)
Electron-beam weld is thought to be the most ideal way of mounting a ’
porous pellet ontoc a plenum, because (1) no brazing material will be intro-
duced to the source which might contaminate the surface, and (2) the pos-
sibility of the brazing material penetrating into the porcus tungsten,
which would reduce the effective cesium emitting area, is eliminated.
Rather unexpected results were obtained, however, when the electron-beam
welded source was tested. Figure 16 shows the neutral fraction as a func-

tion of current density. This source consistently showed very high neutral

fraction (n 15 per cent at 20 ma/cm2) even after more than thirty hours
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Figure 11. Photomicrograph of HRL 3.9 micron after machining
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Figure 12. Photomicrograph of HRL 3.9 micron after de-infiltration
of copper
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Figure 13.

Photomicrograph of HRL 3.9 micron after slight electrolytic
etching
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of operation and four sputter cleanings. To assure that the high neutral
readings were not due to our testing system, a tested HRL 3.9 p U. of I.
rhodium brazed source was used. The data from this source showed low
neutral readings which coincided exactly with the previous results. This
not only proved the contaminants of the HRL 3.9 u electron beam welded
source are on the source (possibly introduced in great depth during the
welding) but also showed the consistency of our tests.

The critical temperatures of this source at 1, 5, 10 and 20 ma/cm2
are shown in Figure 17. The measured transmissivity was 1.15 x J_O_‘+

before the testing and 1.275 x 10”‘+ after the testing.

Test No. 4 - HRL 3.9 micron (NASA electron-beam welded No. 2)

In an attempt to explain the unexpected high neutral fraction of the
previous sample, a second HRL 3.9 micron NASA electron-beam welded source
was extensively tested. Special care was taken in the welding process to
minimize the possibility of contamination. Figure 18 indicates an improve-
ment in neutral fraction after each sputter cleaning. The decrease in
neutral fraction by a factor of ten after the first sputtering indicates
the majority of the contaminants are only on the surface of this source.

In Figure 19 the critical temperatures taken after each sputtering
shows a decrease over 100 degrees after four sputter cleanings. Figure 20
illustrates the critical temperature vs. current densities- for the clean
surface.

The results of subjecting a clean surface to about one torr of air
for thirty seconds are shown in Figures 21 and 22. The data shown in
8

these figures was taken with the chamber pumped down to an order of 10

torr. The surface with adsorbed oxygen shows a low neutral fraction and
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a high critical temperature. The decrease in critical temperature after
two sputterings indicates that a clean surface can be obtained readily.
4

The transmissivity of this source was measured to be 1.30 x 10~

-y .
before the testing and 1.31 x 10  after the testing.

Test No. 5 - LeRC 4.2 micron (NASA electron-beam welded)

In Figure 23 are shown the results of measurements of per cent neutral
fraction as a function of current density from the source. The results
show a very high neutral fraction before the first sputtering cleaning of
the source. An immediate improvement is noted after the source was sput-
terred the first time. However, after seven sputterings, the neutral
fraction was further reduced only by a factor of about two at low current
density (1-5 ma/cmz) and almost not at all for current densities above 6
ma/cm2

Figure 24 shows the neutral fraction as a function of emitter temper-
ature for current densities of 1, 5, 10 and 20 ma/cm2 after sputtering
cleaning. The rapid degradation of performance with increasing current
density and the slow increase of neutral emission at critical temperatures
are the characteristic of this source.

The measured transmissivity of this scurce was 1.18 x lO_u before

testing and 1.13 x 10_4 after testing.

Test No. 6 - EOS 1B-N20 (EOS electron-beam welded)

Figures 25 and 26 are photomicrographs of the surface of EOS 1B-N20
with magnifications of 500 and 1000 respectively. This pellet has a very
low equivalent solid density (51.55 per cent). It can be seen from the
micrographs that the structure is very different from that of compressed

spherical powders. The large dark areas of the micrographs should not be
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Photomicrograph at 500x of EOS 1B-N20

Figure 25.
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Photomicrograph at 1000x of EOS 1B-N20

Figure 26.
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interpreted as holes on the surface but rather are actually cavities
of the same material from the surface. The method of preparation of this
pellet was not supplied.

Figure 27 shows the percent neutral fraction as a function of current
density to 10 ma/cm2. It should be noted that there was little change in
the source after the initial cleaning. It is obvious that extreme care
was taken in the preparation and mounting of this source to avoid any pos-
sible contamination of the surface. The curve in Figure 1 1s extended as
a dotted portion into the range above 10 ma/cm2. This represents our esti-
mation of the higher current density behavior of the source. Data was not
taken in this range because of the extra area of this particular source.
The system used in these tests were designed to handle a source of 0.12
cm2 area at a current density of up to 20-25 ma/cm2. To reach the same
current densitites with an increase in the source area to 0.168 cm2 and
maintain emission limited characteristics required higher potentials than
are possible in the system. Consequently data are reported only to 10
ma/cm2.

Figure 28 shows the neutral fraction as a function of the source
temperature and provides critical temperature data for the source. The
curves shown are for the clean source. The source critical temperature
when initially mounted (no cleaning) as compared with the critical temper-
ature after one sputtering was about 60° higher. Successive cleanings
(sputterings) did not change the critical temperature by more than 15 to
20 degrees,

The transmissivity of this source was measured and found to be 2.26
p 4 10_4 before mounting in the test system. After removal of the source

s -4
from the test system the transmissivity was 2.85 x 10 .
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From all indications this source has excellent characteristics and as

has been mentioned, was prepared with extreme cleanliness.

Test No. 7 - LeRC 3.5 micron

Figure 29 shows the cesium neutral fraction as a function of ion cur-
rent density for this source. Before the source was cleaned by sputtering
the neutral fraction tended to be relatively high at the higher current
densities. After several sputterings to clean the surface, the source
appeared to be clean and behaved as it should for a clean surface. The
curve designated "after fourth sputtering' is typical. Several cycles of
the source were made with ion current densities from 1.0 to 20.0 ma/cm2
During one of these cycles, a problem in the system developed and the
vacuum chamber was opened to correct the fault. Following pump-down, the
source was operated throughout the same range of current densities. A
typical set of data is shown in Figure 29 and designated "after ninth
sputtering.'" The results shown indicate that the source surface was oxy-
genated. This assumption is corroborated by:thé data shown in Figure 30,
in which the neutral fraction is displayed as a functign of temperature.
The critical temperature found on the curve labeled "after fourth sputter-
ing" is much lower than that for the "eighth" and '"ninth" sputtering
curves thus indicating along with the data in Figure 29 that the source
waé oxygenated after exposure to the atmosphere as mentioned.

The data shown in Figure 31 was taken after the fourth sputtering and
before opening the vacuum system and hence can be considered typical of
the source with a clean surface.

The transmissivity of the source was measured both before and after
it was tested with cesium. In both cases the transmissivity was found to

be 7.5 x 10—5.
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Test No. 8 - EOS ORNL 4.2 micron

When the EOS ORNL 4.2 micron sample was first placed in operation,
its neutral fraction was extremely high. The neutral fraction decreased
considerably after the first sputtering as shown in Figure 32. The rapid
increase of neutral fraction with increasing current density indicates
poor pore distribution. The improvement of cesium neutral fraction and
critical temperature after repeated sputter cleaning is demonstrated in
Figures 32 through 36. The neutral fraction as a function of emitter
temperature for a clean surface is shown in Figure 37.

The measured transmissivity was 1.075 x lO—q before testing and 1.63

-4 .
x 10 after testing.

Test No. 9 - EOS ORNL 3.5 micron

This source is similar to ORNL 4.2 micron in view of the high neutral
fraction as it was first placed in operation. The sudden jump in neutral
fraction in the first run when the current density increased to 4 ma/cm2
indicates contaminants were brought out to the surface from the interior
of the pores.‘ The improvement of neutral fraction as a function of current
density as the source was repeatedly sputter cleaned is shown in Figure 38.
Figures 39 through 42 show the change in critical temperatures before and
after sputter cleaning for different current densities. The transmissivity

was measured to be 1.36 x 10‘” before testing and 1.31 x ].O—L+ after testing.
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Figure 48. Photomicrograph at 1000x of EOS W-10% ta
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Figure 49. Photomicrograph at 1000x of HRL 3.9 micron
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Figure 50. Photomicrograph at 1000x of LeRC 4.2 micron
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Figure 51.

Photomicrograph at 1000x of LeRC 3.5 micron
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Figure 52. Photomicrograph at 1000x of ORNL 4.2 micron
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Photomicrograph at 1000x of ORNL

Figure 53.
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Figure 54. Photomicrograph at 1000x of EOS 1B-NL 13
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